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A stereoselective synthesis of (E)-allylic alcohols via
the hydromagnesiation of alkynylsilanes®
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Hydromagnesiation of alkynylsilanes 1 gives (2)-a-silylvinyl Grignard reagents 2, which are reacted with aldehydes
or ketones to afford (2)-B-silyl allylic alcohols 3 in high yields; intermediates 3 can undergo the desilylation reaction
in the presence of anhydrous KF to give (E)-allylic alcohols 4 in good yields.
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Allylic alcohols are important synthetic intermediates and ter-
tiary alylic acohols areincorporated in the structure of avari-
ety of natural products and commercially important
pharmaceuticals, so the synthesis of allylic alcoholsis of con-
siderable interest in organic chemistry.: Many methods can be
used for the stereosel ective synthesis of allylic alcohols,? only
afew methods, however, are available for preparation of (E)-
3-monosubstituted allylic alcohols. The reduction of substi-
tuted propargyl acohols with LiAlH, gave
(E)-3-monosubstituted allylic alcohols.® One-carbon homolo-
gation of (E)-alkenylboronates using the in situ generated
chloromethyllithium yielded (E)-3-substituted allylboronates,
which underwent clean oxidation by alkaline hydrogen perox-
ide to give the isomerically pure (E)-alylic acohols.* The
reduction of (E)-a,B-unsaturated aldehydes or ketones with
sodium monoacetoxyborohydride afforded (E)-3-monosubsti-
tuted allylic acohols.®> These methods so far developed suffer
from some disadvantages such as use of two equivalent expen-
sive LiAlH, as reagent or (E)-configuration compounds as
starting materials.

Hydromagnesiation has emerged as a unique hydrometalla-
tion with some attractive features, such as the high regioselec-
tivity and stereoselectivity observed with alkynylsilanes.6”
We now report a facile route for stereoselective synthesis of
(E)-dllylic acohols via the hydromagnesiation of akynylsi-
lanes (Scheme 1).

Alkynylsilanes 1 were easily prepared according to the lit-
erature procedure.® Hydromagnesiation of alkynylsilanes 1 at
25°C in ether for 6h gave (2)-a-silylvinyl Grignard reagents 2,
which reacted with aldehydes or ketones at room temperature

Table 1 Synthesis of (2)-B-silyl allylic alcohols 3

Entry R R? R2  Product® YieldP(%)
1 n-C4Hg C,Hs H 3a 82
2 n-C4Hg CH3 CH3 3b 79
3 n-C4Hg 4-CICgH, H 3c 74
4 i-CsHqq C,Hs H 3d 80
5 i-CsHq4 CHs; CHs; 3e 78
6 i-CsHqq Ph H 3f 81
7 n-C6H13 C2H5 H 39 83
8 n-C6H13 CH3 CH3 3h 75
9 n-CgHq.3  4-CICgH, H 3i 80
10 PhCH, C,Hs H 3j 69

a All the compounds were characterised using "H NMR, IR and
elemental analyses.
blsolated yield based on the alkynylsilane used.

for 2h to afford (2)-B-silyl alylic alcohols 3 in high yields.
The experimental results are summarised in Table 1.

The isomeric purities of products 3 were determined by
IH NMR spectroscopy (300 MHz) to be more than 96%.
One olefinic proton signal of 3 splits characteristically into
one triplet with coupling constant J = 7.0 Hz, which indicated
that the hydromagnesiation to the alkynylsilanes had taken
place with strong preference for the addition of the magne-
sium atom at the carbon adjacent to the silyl group.

Vinylsilanes are important synthetic intermediates owing to
the versatile reactivity of the silyl group and the carbon-carbon
double bond.? (2)-B-Silyl alylic acohols 3 are aso effective
precursors for synthesising (E)-allylic alcohals. In the presence
of anhydrous KF they can easily undergo the stereospecific

Cp,TiC,(5mol%) R SiMe
R—=—=—SMe; * i-BuMgBr 5o >
B0, 25°C H MgBr
1 2
Rl
=0 : H
R>; _ R>_/S|Me3 anhydrousKF -
o — OH oc OH
B0, 025°C |, >< DMSO, 150 °C |
R R R R
3 4
Scheme 1

* To receive any correspondence. E-mail: Caimz618@sina.com
T Thisis a Short Paper, there istherefore no corresponding material in
J Chem. Research (M).



Table 2 Synthesis of (E)-allylic alcohols 4

Entry R R’ R2  Product?  Yield?(%)
1 n-C4H9 C2H5 H 4a 73
2 n-CyHq CH, CH,  4b 70
3 n-C4H9 4-C|C6H4 H 4c 76
4 i-CoHyy C,Hs H 4d 75
5 i—C5H11 CH3 CH3 4e 71
6  iCHp Ph H af 79
7 n-C6H13 C2H5 H 4g 74
8 n-C6H13 CH3 CH3 4h 66
9 n-C6H13 4-C|C6H4 H 4i 78

aAll the compounds were characterised using '"H NMR, IR and
elemental analyses.
blsolated yield based on the (2)-B-silyl allylic alcohol used.

desilylation reaction in DMSO with retention of configura-
tion.10 Thus, the desilylation reactions of compounds 3 at 150°C
in DMSO for 3h in the presence of anhydrous KF afforded
(E)-allylic acohols 4 in good yields. The typica results are
summarised in Table 2. The stereochemistry of products 4 was
easily established, since IH NMR spectra of 4b, 4e and 4h give
rise to adoublet at 5.4-5.5 with a coupling constant of 16Hz,
typical of trans-positioned protons. IR spectra of products 4a—i
show strong IR absorption bands at about 970cm', which dso
indicate the existence of trans-positioned protons.1t

In conclusion, the methodology discussed in this paper pro-
vides a convenient and practical route to (E)-alylic alcohols,
which has advantages of readily available starting materials,
straightforward and simple procedures, mild reaction condi-
tions and good yields.

IH NMR spectra were recorded on an AZ-300 MHz spec-
trometer with TMS as an internal standard. IR spectra were
obtained on a Perkin-EImer 683 instrument as neat films.
Microanalyses were measured using a Yanaco MT-3 CHN
microelemental analyser. All solvents were dried, deoxy-

genated and freshly distilled before use.

(2)-B-Silyl allylic alcohols 3a-j; general procedure: To a solu-
tion of isobutylmagnesium bromide (4.5 mmol) in diethyl ether (7 ml)
was added Cp,TiCl, (50 mg, 0.2 mmol) at 0°C under Ar, and the mix-
ture was stirred for 30 min at that temperature. To this solution was
added akynylsilane 1 (4.0 mmol), and the mixture was stirred for 6h
at 25°C. After being cooled to 0°C, aldehyde or ketone (4.0 mmol)
was added and the mixture was stirred for 2h at 25°C, quenched with
sat. ag NH4Cl (25 ml) and extracted with Et,O (2 x 30 ml). The
organic layer was washed with sat. ag NH,CI (20 ml) and water (3 x
30 ml) and dried (MgSO,). Removal of solvent under reduced pres-
sure gave an oil, which was purified by column chromatography on
silicagel (eluent: light petroleum — AcOEt, 10:1).

3a: 'H NMR (CDCl5): 8=6.09 (t, J= 7.0 Hz, 1H), 3.95 (t, J=5.7
Hz, 1H), 2.39-1.90 (m, 3H), 1.54-1.14 (m, 6H), 1.12-0.74 (m, 6H),
0.15 (s, 9H). IR (film): v = 3368, 2958, 2860, 1612, 1458, 1249, 837
cm™L. Anal. caled for C,H,60Si: C, 67.29; H, 12.15. Found: C, 67.04;
H, 11.87%.

3b: IH NMR (CDCl5): 8 =5.96 (t, J = 7.0 Hz, 1H), 2.35-1.89 (m,
3H), 1.57-1.14 (m, 10H), 0.92 (t, J = 5.4 Hz, 3H), 0.20 (s, 9H). IR
(film): v = 3421, 2959, 2928, 2860, 1603, 1459, 1249, 838 cmL. Anal.
cacd for CpHc0SI: C, 67.29; H, 12.15. Found: C, 66.96; H,
11.90%.

3c: IH NMR (CDCly): & = 7.42-7.15 (m, 4H), 6.13 (t, J = 7.0 Hz,
1H), 5.12 (s, 1H), 2.45-1.96 (m, 3H), 1.65-1.23 (m, 4H), 0.93 (t, J =
5.4 Hz, 3H), 0.03 (s, 9H). IR (film): v = 3400, 2956, 2858, 1610,
1488, 1249, 840 cml. Anal. calcd for CigH.sOCISI: C, 64.76; H,
8.43. Found: C, 64.45; H, 8.21%.

3d: 'H NMR (CDCl3): 8=6.06 (t, J= 7.0 Hz, 1H), 3.93 (t, J=5.7
Hz, 1H), 2.37-1.90 (m, 3H), 1.57—1.18 (m, 5H), 1.11-0.78 (m, 9H),
0.15 (s, 9H). IR (film): v = 3399, 2956, 2871, 1603, 1467, 1382,
1365, 1249, 838 cmrL. Anal. calcd for Cy3H,0Si: C, 68.42; H, 12.28.
Found: C, 68.59; H, 12.11%.

3e: IH NMR (CDCly): 8 = 5.96 (t, J = 7.0 Hz, 1H), 2.37-1.90 (m,
3H), 1.50-1.23 (m, 9H), 1.11-0.77 (m, 6H), 0.20 (s, 9H). IR (film): v
= 3391, 2955, 2870, 1610, 1467, 1384, 1366, 1248, 839 cm'L. Anal.
calcd for Ci3H,g0SI: C, 68.42; H, 12.28. Found: C, 68.20; H,
12.04%.
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3f: TH NMR (CDCly): 8 = 7.16 (s, 5H), 6.10 (t, J = 7.0 Hz, 1H),
5.12 (s, 1H), 2.48-2.00 (m, 2H), 1.89 (s, 1H), 1.58-1.20 (m, 3H),
1.12-0.85 (m, 6H), 0.05 (s, 9H). IR (film): v = 3391, 2955, 2870,
1610, 1498, 1467, 1384, 1366, 1248, 839 cm. Anal. cacd for
C47H,g0Si: C, 73.91; H, 10.14. Found: C, 73.65; H, 9.89%.

3g: IH NMR (CDCl3): =6.06 (t, J= 7.0 Hz, 1H), 3.93 (t, J=5.7
Hz, 1H), 2.38-1.83 (m, 3H), 1.59-1.09 (m, 10H), 1.05-0.73 (m, 6H),
0.16 (s, 9H). IR (film): v = 3367, 2961, 2855, 1613, 1462, 1249, 837
cmL. Anal. caled for Ci4H3,0Si: C, 69.42; H, 12.40. Found: C, 69.65;
H, 12.53%.

3h: *H NMR (CDCly): 8 = 5.96 (t, J = 7.0 Hz, 1H), 2.37-1.83 (m,
3H), 1.58-1.10 (m, 14H), 0.89 (t, J = 5.4 Hz, 3H), 0.19 (s, 9H). IR
(film): v = 3400, 2958, 2926, 1603, 1460, 1248, 838 cm'L. Anal. calcd
for Ci4H400Si: C, 69.42; H, 12.40. Found: C, 69.21; H, 12.25%.

3l: 'H NMR (CDCly): & = 7.41-7.10 (m, 4H), 6.12 (t, J = 7.0 Hz,
1H), 5.09 (s, 1H), 2.50-1.98 (m, 3H), 1.67-1.11 (m, 8H), 0.95
(t, J = 5.4 Hz, 3H), 0.13 (s, 9H). IR (film): v = 3418, 2961, 2855,
1609, 1595, 1466, 1248, 840 cmL. Anal. calcd for C1gH,qOCISI: C,
66.56; H, 8.94. Found: C, 66.23; H, 8.71%.

3j: IH NMR (CDCly): & = 7.40-6.90 (m, 5H), 6.19 (t, J = 7.0 Hz,
1H), 3.98 (t, J = 5.7 Hz, 1H), 3.45 (d, J = 7.4 Hz, 2H), 2.03 (s, 1H),
1.70-1.17 (m, 2H), 0.87 (t, J = 5.4 Hz, 3H), 0.13 (s, 9H). IR (film): v
= 3400, 2960, 2876, 1601, 1495, 1249, 838 cm. Anal. calcd for
CysH,40Si: C, 72.58; H, 9.68. Found: C, 72.31; H, 9.46%.

(E)-Allylic alcohols 4a—; general procedure: To a solution of
(2)-B-silyl dlylic alcohol 3 (0.5 mmol) in dry dimethyl sulfoxide (2.5
ml) was added anhydrous potassium fluoride (58 mg, 1 mmol). The
mixture was heated at 150°C for 3h, quenched with water (10 ml) at
25°C and extracted with Et,0 (3 x 20 ml). The ethereal solution was
washed with sat. ag NaCl (3 x 15 ml), dried (MgSO,) and concen-
trated under reduced pressure. The oily residue was purified by flash
column chromatography on silica gel (eluent: light petroleum —
AcOEt, 8:1) to give 4a—i as qils.

4a: 'H NMR (CDCly): & = 5.44 (m, 2H), 4.01-3.63 (m, 1H),
2.26-1.76 (m, 3H), 1.64-1.06 (m, 6H), 1.04-0.66 (m, 6H). IR (film):
v = 3355, 2960, 2860, 1670, 1464, 1378, 967 cmL. Anal. calcd for
CyH150: C, 76.06; H, 12.68. Found: C, 76.25; H, 12.53%.

4b: IH NMR (CDCl3): & = 5.50 (d, J = 16.0Hz, 1H), 5.39 (m, 1H),
2.25-1.80 (m, 3H), 1.69-1.09 (m, 10H), 0.88 (t, J = 5.4Hz, 3H).
IR (film): v = 3360, 2962, 2858, 1669, 1465, 1378, 969 cm™. Anal.
calcd for CgH1g0: C, 76.06; H, 12.68. Found: C, 75.83; H, 12.46%.

4c: H NMR (CDCly): & = 7.34-7.12 (m, 4H), 5.55 (m, 2H), 4.94
(d, J = 5.7 Hz, 1H), 2.27-1.78 (m, 3H), 1.58-1.18 (m, 4H), 0.90
(t, J = 54 Hz, 3H). IR (film): v = 3343, 2958, 2858, 1667, 1596,
1466, 1378, 969 cm'L. Anal. calcd for C,3H,,0CI: C, 69.49; H, 7.57.
Found: C, 69.18; H, 7.40%.

4d: IH NMR (CDCly): & = 5.48 (m, 2H), 4.03-3.66 (m, 1H),
2.25-1.78 (m, 3H), 1.70-1.15 (m, 5H), 1.12-0.71 (m, 9H). IR (film):
v = 3350, 2958, 2850, 1669, 1466, 1384, 969 cm™. Anal. calcd for
CyoH200: C, 76.92; H, 12.82. Found: C, 76.68; H, 12.59%.

4e: 1H NMR (CDCly): 8 = 5.49 (d, J = 16.0Hz, 1H), 5.37 (m, 1H),
2.11-1.63 (m, 3H), 1.37-1.04 (m, 9H), 1.01-0.62 (m, 6H). IR (film):
v = 3365, 2956, 2870, 1668, 1467, 1384, 1366, 972 cmL. Anal. calcd
for CyoH,00: C, 76.92; H, 12.82. Found: C, 76.70; H, 12.61%.

4f: TH NMR (CDCly): & = 7.42-7.03 (m, 5H), 5.54 (m, 2H), 4.90
(d, 3 = 5.7 Hz, 1H), 258 (s, 1H), 2.25-1.78 (m, 2H), 1.54-1.13
(m, 3H), 1.10-0.73 (m, 6H). IR (film): v = 3346, 2955, 2869, 1666,
1602, 1492, 1452, 1384, 1366, 971 cm™L. Anal. calcd for Cy4H,00: C,
82.35; H, 9.80. Found: C, 82.04; H, 9.53%.

4g: 'H NMR (CDCly): & = 550 (m, 2H), 4.05-3.67 (m, 1H),
2.26-1.78 (m, 3H), 1.73-1.10 (m, 10H), 1.09-0.70 (m, 6H).
IR (film): v = 3350, 2959, 2855, 1670, 1459, 1378, 965 cm. Anal.
calcd for Cy3H,,0: C, 77.65; H, 12.94. Found: C, 77.34; H, 12.73%.

4h: IH NMR (CDCl3): 8 =5.53 (d, J = 16.0Hz, 1H), 5.42 (m, 1H),
2.23-1.73 (m, 3H), 1.67-1.07 (m, 14H), 0.87 (t, J = 5.4 Hz, 3H).
IR (film): v = 3367, 2961, 2855, 1668, 1464, 1376, 970 cm’. Anal.
caled for Cy9H5,0: C, 77.65; H, 12.94. Found: C, 77.40; H, 12.68%.

41: 'H NMR (CDCly): & = 7.30-7.07 (m, 4H), 5.51 (m, 2H), 4.89
(d, J = 5.7 Hz, 1H), 2.66 (s, 1H), 2.22-1.74 (m, 2H), 1.62-1.05 (m,
8H), 0.86 (t, J = 5.4 Hz, 3H). IR (film): v = 3338, 2956, 2855, 1667,
1596, 1490, 1466, 967 cm™. Anal. calcd for Cy5H,,0CI: C, 71.29; H,
8.32. Found: C, 71.38; H, 8.56%.
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